Data-Driven Artificial Intelligence with Machine Learning

Una-May O'Reilly unamay@csail.mit.edu
Leader: ANYSCALE LEARNING FOR ALL Group
MIT Computer Science and Artificial Intelligence Lab

NASA Workshop on Application of Machine Learning Technologies for Scientific and Engineering Domains

Aug 17, 2016

Commonly Used ML Algorithms

- **Generalized Linear Models**
 - Ordinary Least Squares Linear Regression
 - Ridge Regression: imposes a penalty on the size of coefficients
 - Lasso Regression: estimates sparse coefficients
 - Elastic Net
 - Stochastic gradient descent

 - Logistic Regression
 » linear model for classification (vs regression)
 - » aka logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier
 - Polynomial regression: inear models trained on nonlinear functions of the data

- Non-Linear Models
 - Support Vector Machines
 - Naïve Bayes
 - Decision Tree, **Random Forest**
 - Gaussian Processes
 - Neural Network
 - » deep learning
 - Genetic programming

Supervised Learning Algorithms

Example of Genetic Programming for Modeling

- Nonlinear Dynamical Systems Identification
- J. Bongard and H. Lipson, "Automated reverse engineering of nonlinear dynamical systems," Proceedings of the National Academy of Sciences, vol. 104, no. 24, pp. 9943–9948, 2007.
- M. Schmidt and H. Lipson, "Distilling free-form natural laws from experimental data," Science, vol. 324, no. 5923, pp. 81–85, 2009.
- Inferring biological networks by sparse identification of nonlinear dynamics, Niall M. Mangan, Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, arXiv:1605.08368

 Data-driven methods in fluid dynamics: Sparse classification from experimental data, in Whither Turbulence and Big Data in the 21st Century, A. Pollard et al. Eds. 281-301 (Springer 2016) [Bai, Brunton, Brunton, Kutz, Kaiser, Spohn, Noack].

Example of

Genetic Programming for Big Data ML

How Genetic Programming Works

- Goal: FIND F(X) THAT GENERATES Y
 - Generalized Linear Modeling (GLM) optimizes model structural parameters/coefficients using (X,Y) examples

$$\hat{y}(w,x) = w_0 + w_1 x_1 + \dots + w_p x_p$$

$$min ||Xw - y||_2^2$$

- GP composes candidate models as program expression
 - \Rightarrow eg: x1 + x2*x3 + (x2+x4/x5)
 - coefficients/parms tuned after model composition or within it
 - » composition uses arithmetic operators
 - +, -, *, protected divide
 - square, square root, log, exponent, cos, sin etc...
 - » tuning through GLM or other means

FlexGP

- Introduction -> open source project
- · Scaling -> bigger
 - FlexGP system
 - FCUBE
- · Learners -> improving their ML competence

Parameter and Data Factoring

- {∏,Dⁱ_{tr}}
- Distribution over each of these parameters probabilistically biases how each instance chooses a value for that parameter when it starts the local GP.
 - Eg. {W,Norm2,{d1...3000},{x1,x2}}
 - Eg. {W∪X,Norm2,{d2...6000},{x1,x4}}.

	Parameter	Value	Definition	
п D	Operator Set (L)	W	{+,-,/,*}	
		X	$\{exp, ln\} \\ \{sqrt, x^2, x^3, x^4\}$	
		Y	$\{sqrt, x^2, x^3, x^4\}$	
		Z	$\{sin, cos\}$	
	Objective Function (O)	Norm	Mean absolute error	
		Norm-2	Mean squared error	
		Norm-inf	Max error	
	Training Cases (D_{tr}^i)	n	Subset of D_{gp} , of size n	
	Feature Set (F)	m	Subset of features, of size m	

Fusion: Model Combination Methods

- Model Selection
 - Average Model Prediction (AMP)
 - » Average performance of every model in ensemble on D_test
 - Best Apriori Model (BAM)
 - » Select best model based on MSE based validation data
- Model Fusion
 - Average Ensemble Prediction (AVE)
 - » Report average of predictions
 - Median Average Model (MAD)
 - » Average of median plus 2 neighbours
 - Adaptive Regression Mixing (ARM)
 - » Yang, Y.: Adaptive regression by mixing. J. Am. Stat. Assoc. 96(454), 574–588 (2001)
- Probabilistic Fusion (impractical)

Adaptive Regression Mixing

- Concept: report a weighted average of model predictions
- average of model predictions
 Weights obtained by using D_f
- Assumes model errors are normally distributed
- Uses variance in errors to identify weights
- Split up D_f into D⁽¹⁾ and D⁽²⁾ and r is size of D_f
- Provides a substitution for r in case of underflow
- Step 1: Evaluate σ_m^2 which is the maximum likelihood estimate of the variance of the errors, $\bar{\epsilon}_m = \{\bar{g}_{mj} z_j | \bar{\mathbf{x}}_l, z_j \in D^{(1)}\}$. Compute the sum of squared errors on $D^{(2)}$, $\beta_m = \sum_{j=\frac{n}{2}+1}^{r} (\bar{g}_{mj} z_j)^2$.
- Step 2: Estimate the weights using:

$$W_{m} = \frac{(\sigma_{m})^{-r/2} exp(-\sigma_{m}^{-2}\beta_{m}/2)}{\sum_{j=1}^{M} (\sigma_{j})^{-r/2} exp(-\sigma_{j}^{-2}\beta_{j}/2)}$$
 (

Step 3: Redraw subsets $D^{(1)}$ and $D^{(2)}$ and repeat steps 1 and 2. Continue this process for a fixed number of times ¹. Average the weights to get the final weights for the models.

Given a test point $\overline{\mathbf{x}}_j$, predict \hat{z}_j as the weighted average of model predictions: $\hat{z}_j = \sum_{m=1}^o W_m \hat{y}_{mj}$.

Combination Methods

Moving Forward

- FlexGP indicates how to crisply isolate algorithm from scaling framework
- ALFA and rest-of-EC will always be developing new learners
 - but that requires easy scaling
- · We also need to
 - compare multiple learners
- bonus: how to facilitate collaboration with different learners
 - collaboration that might help us strengthen our niche
- for ALFA:
 - to get this boost in power, leave our implementations that hybridized popular design features
 - » eg tree complexity, NSGA2, usual parms
 - start to work on what had been put aside for the F3 phase
- · For this we developed FCUBE platform

Fig. 4: Collaborative Big Learning Activity taking place within the first edition of the EC for Big Data and Big Learning workshop, GECCO 2014. Participants simply provide stand-alone executables of their learners. The FCUBE team integrates them in the framework, performs all the factor, filter, fuse process and provides performance metrics.

	$D_{tr_1}D_{tr_9}$	D_f	D_{te}	Total
Exemplars	1.050.000	1.050.000	500.000	11.000.000
Features	28	28	28	28
negative exemplars	47%	47%	47%	47%
positive exemplars	53%	53%	53%	53%
function	training	fusion train	testing	-
accessed by	FCUBE instances	FCUBE Server		-

TABLE II: Characteristics of the Higgs dataset and of the generated splits.

State of Art with GP

- · What's "open source" ready from ALFA?
 - MRGP show competence and central idea
 - EFS rev 0
- · what's underway:
 - EFS ongoing work looking for a client to drive the research's next steps
 - BGP many objective, better info

Tree-based GP vs. EFS

OLD/MRGP	NEW/EFS	
Search for models	search for coadapted features	
Performance Metric: model error	Performance metric: feature importance	
Fitness is independent of the population	Fitness depends on the population	
Symbolic representation	No symbolic representation (faster)	

Summary

- Scalable, competent (evolutionary) machine learning and data science
- Cloud computing as a resource
- FlexGP system:
 - data parallelism: factoring
 - ensemble based modeling through filtering and fusion
- Improving the Competence of Learners
 - MRGP
 - » fine tuning model sub-expressions with ML/linear regression
 - » improved accuracy and time-to-find-solution
 - EFS
 - » deep learning of features and model
 - » improved time-to-find-solution and readability

Feature Selection as a Goal Readable Method Speed Nonlinearities | Weight tuning | Feature Sel. GP MRGP TARGET EFS NN Linear Regression LASSO VVV / COMPETENCY COLOR LEGEND High Medium Low ALFA

Reflections and Ongoing Directions

- · Filtering and fusion need more work
- FCUBE needs refinements and use cases
- Lots more scope for better learners

