96th NIA CFD Seminar – Topic: Hamiltonian-Strand (HAMSTR) Approach Using Hybrid Meshes for Aerodynamic Flow Analysis
Date: Tuesday, November 28, 2017
Time: 11am-noon (EST)
Room: NIA, Rm101
Speaker: Yong Su Jung
Abstract: A solution framework using Hamiltonian paths and strand grids (HAMSTR) is presented for two and three-dimensional flows. The methodology can create a volume mesh starting from either an unstructured surface mesh comprised of mixed triangular-quadrilateral elements or a fully unstructured volume mesh. “Line structure” through the meshes are found in a robust manner and the flow solver uses line-implicit schemes and stencil-based discretization along these lines, similar to a structured grid flow solver. The framework has been developed mostly for rotorcraft CFD simulations, which requires robust mesh generation around complex geometry and efficient numerical method for large scale problems.
Bio: Yong Su Jung is a Ph.D candidate student in Aerospace Engineering department at the University of Maryland. He holds B.S (2012). and M.S (2014) in Aerospace Engineering from Korea Advanced Institute of Science and Technology. His research interests are in developing and applying Computational Fluid Dynamics methods for external flow simulations, such as rotary wing. His research has been funded by Department of Defense (DoD) HPCMP CREATE-AV program and Korea Aerospace Research Institute. He was a member of the University Maryland team received first place in the graduate category for 2016 AHS Design Competition.