
A Crash Course in SU2 Development
Dr. Thomas D. Economon

Joint NIA & SU2 Foundation Workshop

Hampton, Virginia

August 9, 2019

So, you want to be an SU2 developer?

Good news: it’s easy.

We leverage standard development processes
and the latest tools for open-source projects.

You will be ready to hack at the end of this talk.

Git/Branching Development Pull RequestRegressions Release

Anyone can be an SU2 developer.

Git/Branching Development Pull RequestRegressions Release

Your starting point: https://github.com/su2code/SU2.

https://github.com/su2code/SU2

Git/Branching Development Pull RequestRegressions Release

http://xkcd.com/1597/

Git/Branching Development Pull RequestRegressions Release

Here’s that list of shell commands you should memorize:

• $ git clone https://github.com/su2code/SU2.git

• $ git branch

• $ git checkout -b feature_awesome origin/feature_awesome

• $ git status

• $ git diff

• $ git commit -am “This is an awesome commit.”

• $ git push origin feature_awesome

• $ git checkout develop

• $ git pull origin develop

• $ git merge develop

And their translations:

• Get a fresh copy of the entire repo (master branch to start)

• Check which branches I have locally

• Check out my feature branch that is already on the remote

• Check which files have changed since last commit

• Detailed diff of code changes since last commit

• While working, make commits frequently with messages

• Regularly push to the remote on GitHub

• Switch to the develop branch (assuming you have it locally)

• Merge the changes in the remote develop into local develop

• Merge the changes from local develop into current local branch

https://github.com/su2code/SU2.git

Git/Branching Development Pull RequestRegressions Release

Author: Vincent Driessen
Original blog post: http://nvie.com/archives/323
License: Creative Commons

We use the popular
Gitflow branching

model.

Git/Branching Development Pull RequestRegressions Release

See all of our public repo branches here.

Git/Branching Development Pull RequestRegressions Release

Note that develop is
a protected branch

A current snapshot of
active branches

Git/Branching Development Pull RequestRegressions Release

New branches can be made in the browser interface here or by pushing local branches to the remote with git.

Git/Branching Development Pull RequestRegressions Release

C++ Source Code in SU2_*/src/, majority of lines in
Common/src/ & SU2_CFD/src

Python Scripts

Run ./bootstrap to
reset autotools

External source files,
e.g., ParMETIS

Inviscid NACA 0012

Config files for tests

IDE project files, e.g., Xcode

Template config file
with all options

Here is what you see
inside the SU2/ repo.

Git/Branching Development Pull RequestRegressions Release

C++ Executables
• SU2_CFD -> Primary multiphysics PDE solver for primal and adjoint
• SU2_SOL -> Solution export code
• SU2_DEF -> Mesh deformation
• SU2_DOT -> Gradient projection
• SU2_GEO -> Geometry definition
• SU2_MSH -> Mesh adaptation

Python Scripts (just a subset of them)
• parallel_computation.py
• mesh_deformation.py
• shape_optimization.py
• continuous_adjoint.py
• discrete_adjoint.py
• finite_differences.py
• direct_differentiation.py

Git/Branching Development Pull RequestRegressions Release

• C++ class abstractions encourage code reuse and data encapsulation ensures
you can make localized changes easily.

• Common base classes/methods (grid, linear solvers, output, etc.) are reused for
many sets of physical governing equations.

• For a particular PDE, we define iteration, numerics, solver, and variable classes
that are customized for the particular methods and algorithms.

• Legacy file division: solver_*.cpp, variable_*.cpp, numerics_*.cpp, contain
child classes for a particular PDE, e.g., solver_direct_mean.cpp for mean flow.

• We are in the process of moving to a single class per file convention!

Git/Branching Development Pull RequestRegressions Release

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

 CFluidIteration

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

 /*--- Roe's Flux approximation ---*/

 for (iVar = 0; iVar < nVar; iVar++) {

 val_residual[iVar] = kappa*(ProjFlux_i[iVar]+ProjFlux_j[iVar]);
 for (jVar = 0; jVar < nVar; jVar++) {
 Proj_ModJac_Tensor_ij = 0.0;

 /*--- Compute |Proj_ModJac_Tensor| = P x |Lambda| x inverse P ---*/

 for (kVar = 0; kVar < nVar; kVar++)
 Proj_ModJac_Tensor_ij += P_Tensor[iVar][kVar]*Lambda[kVar]*invP_Tensor[kVar][jVar];

 val_residual[iVar] -= (1.0-kappa)*Proj_ModJac_Tensor_ij*Diff_U[jVar]*Area*Dissipation_ij;
 if(implicit){
 val_Jacobian_i[iVar][jVar] += (1.0-kappa)*Proj_ModJac_Tensor_ij*Area;
 val_Jacobian_j[iVar][jVar] -= (1.0-kappa)*Proj_ModJac_Tensor_ij*Area;
 }
 }
 }

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

Top-down walkthrough
of some key classes

instantiated for a RANS
calculation in SU2_CFD.

Git/Branching Development Pull RequestRegressions Release

• Now that you know the basics, you are ready to create a new branch for your
awesome feature (feature_awesome) and start hacking.

• But you might say, "Wait, how do I coordinate my contribution with other ongoing
work in the repository?”

• Posting to GitHub in issues and projects or interacting with the SU2
Foundation technical Working Groups are great ways to discuss potential
developments and coordinate among other developers in the open.

• And then maybe you’ll ask, “How can I make sure that my work doesn’t ‘break’
other capabilities that already exist in SU2?”

• Continuous integration will save your bacon. Travis CI is free for open-source!

Git/Branching Development Pull RequestRegressions Release

Our security blanket: a
comprehensive suite of

~200 regression test cases
for serial, parallel, physics,

AD, python, etc.

Git/Branching Development Pull RequestRegressions Release

Use continuous integration
to guide your development
by activating Travis CI for

your own branches! Update
SU2/.travis.yml with your
own email and branch.

Continuous Integration setup for SU2.

dist: trusty
sudo: required

language: python

compiler:
 - gcc

notifications:
 email:
 recipients:
 - your.email@here.com

branches:
 only:
 - feature_awesome

Git/Branching Development Pull RequestRegressions Release

New capabilities in your feature branch should also have a test case to protect them in the future.

NACA0012
naca0012 = TestCase('naca0012')
naca0012.cfg_dir = "euler/naca0012"
naca0012.cfg_file = "inv_NACA0012_Roe.cfg"
naca0012.test_iter = 20
naca0012.test_vals = [-4.047448, -3.538057, 0.338691, 0.023131] #last 4 columns
naca0012.su2_exec = "SU2_CFD"
naca0012.timeout = 1600
naca0012.tol = 0.00001
test_list.append(naca0012)

1. Add a new test case to serial_regression.py, parallel_regression.py, etc. Use others as a guide. See NACA 0012 example.

If the computed values after one of your commits
don’t match these values, you will get an email with

details of the failed cases. Investigate it!

Git/Branching Development Pull RequestRegressions Release

2. Put the config file and any supporting data in the corresponding locations. Travis CI combines the complementary sets.

Larger, more static files that
support the tests go in the
TestCases repo.

Lighter weight, more
frequently updated files
go in code repo.

Git/Branching Development Pull RequestRegressions Release

• So, you’ve finished your awesome feature and the tests are passing.
You’ve even added your own regression test (or two), and you checked
that there are no new compiler warnings and the style conforms to the
SU2 standard.

• At this point you are wondering, “I would like to contribute my feature to
the open source, but how do I do that?”

• To get your work into an official open-source release of SU2, the
modifications have to first be staged in the develop branch.

• To do so, we use the standard Pull Request (PR) approach.

Git/Branching Development Pull RequestRegressions Release

Once you’re ready to contribute, it’s PR time.

Git/Branching Development Pull RequestRegressions Release

A PR is a request to the project to pull in your contribution. Can be from an internal branch or from an external fork.

Git/Branching Development Pull RequestRegressions Release

Submit the PR to the
develop branch

Fill out the PR
template questions

that guide you along
your way.

Git/Branching Development Pull RequestRegressions Release

PRs keep community informed, offer opportunity for discussion, and are a controlled gate for quality assurance of contributions.

Code is reviewed by fellow
developers for content,
organization, and style. PR
is blocked until at least one
approval! Our convention is
2 reviewer approvals.All regression tests must pass

with your code integrated.
Travis CI again takes care of

this for us. Merging is blocked
until passage.

You can now open draft PRs
on GitHub to work in the
open - get feedback and

continuously run regressions
on your branch!

Git/Branching Development Pull RequestRegressions Release

Details of the
tests for all PRs

can be found over
in Travis CI.

Git/Branching Development Pull RequestRegressions Release

Releases: we move develop to master, create tags, binaries, and advertise. Your awesome feature is released!

Git/Branching Development Pull RequestRegressions Release

Documentation and tutorials are critical for amplifying the impact of your work. Good news: it’s the same process to create it.

https://su2code.github.io

Git/Branching Development Pull RequestRegressions Release

Keep up-to-date via email with all of the activity in the repo by “watching”

1. Clone main repository: $ git clone https://github.com/su2code/SU2.git

2. Create new feature branch (in remote and locally) for your development work. Work on this branch in the repo.

3. Activate the regressions for your branch by changing to your branch name and email in .travis.yml (trigger builds manually in Travis CI
interface). Use this to guide development and correct any failures along the way that you will be informed of by email.

4. Work on your feature! Please mind white space issues, compiler warnings, and match SU2 style.

5. If you are working on a single branch for an extended amount of time, merge the remote develop branch into your own branch at regular,
frequent intervals. This ensures that, when the time comes, it will be easy to merge your contribution into develop, as you will have
resolved any conflicts on your side before a PR.

6. Once you feel your feature is ready, submit a PR. Fill out the PR template that is provided for you. Consider opening a draft PR earlier in
the process to get feedback sooner and have your branch tested by Travis CI while you work.

7. Get reviews and engage with the community concerning your contribution. Fix problems in your branch or address any feedback on the
message boards. Note that any new commits will appear right there in the open PR and will kick-off the regressions again.

8. Once the reviewers approve and the regressions pass, the community will merge in your work.

9. Celebrate your contribution and proudly introduce yourself as an SU2 developer at your social engagements.

SU2 Development Survival Guide
A Best Practice Workflow

https://github.com/su2code/SU2.git

Pretty easy to be a developer, huh?

So, try crazy ideas in your branches. Don’t be afraid to
make big changes that push the boundaries of the code.

The community and infrastructure will be there to help you.
This is how we make progress.

We have set up safety nets and removed
overhead wherever possible.

