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How much CFD theory can you cover in 20 
minutes?

• This presentation will NOT: 
– Cover everything you need to know to be an expert in CFD.
– Replace textbooks, graduate level classes, and years of industry 

experience.

• This presentation WILL:
– Introduce the some of the theory behind CFD & numerical settings.
– Provide some vocabulary to help you understand the information 

available in textbooks, online, and in coursework.
– Help you troubleshoot logically.
– Make CFD more than just a ‘black box’.



Outline

• Equations of Fluid Motion
• Numerical Methods

– The CFL number

– Related Vocabulary

• Conclusions & Further Reading
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… + equation of state, 
equations for viscous 
stresses … 
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Equations of Fluid Motion

Surface element

Conservation Equations: integral form
… apply Gauss’ Theorem



Equations of Fluid Motion
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Equations of Fluid Motion

Discretization:

Each of these terms will be expressed in terms of the values at 
vertices of the mesh. Several methods exist for how to approximate the flux 
vectors and gradients

Numerical residual
In SU2: 
Res_Flow[0]

Approximate flux 
between point i 
and j

Surface area 



Equations of Fluid Motion

Discretization:

Iterations of the solution for the state vector U (finite volume formulation):



Equations of Fluid Motion

Discretization:

Iterations of the solution for the state vector U (finite difference formulation):



Numerical Methods

• Start from some initial guess of the solution Ui at the 
points in the mesh.

• Update the value of Ui based on approximations to 
the flux vectors between i and all its neighbors j.

• Continue until the residual approaches 0. 
• How well flux is approximated, and how quickly the 

residual will approach 0 depends on the choice of 
numerical methods, the mesh refinement, and other 
options. 

X

U

n=1



Numerical Methods

• Start from some initial guess of the solution Ui at the 
points in the mesh.

• Update the value of Ui based on approximations to 
the flux vectors between i and all its neighbors j.

• Continue until the residual approaches 0. 
• How well flux is approximated, and how quickly the 

residual will approach 0 depends on the choice of 
numerical methods, the mesh refinement, and other 
options. 

X

U

n=1

n=2



Numerical Methods

• Start from some initial guess of the solution Ui at the 
points in the mesh.

• Update the value of Ui based on approximations to 
the flux vectors between i and all its neighbors j.

• Continue until the residual approaches 0. 
• How well flux is approximated, and how quickly the 

residual will approach 0 depends on the choice of 
numerical methods, the mesh refinement, and other 
options. 

X

U

n=1

n=2

n=3



Numerical Methods

• Start from some initial guess of the solution Ui at the 
points in the mesh.

• Update the value of Ui based on approximations to 
the flux vectors between i and all its neighbors j.

• Continue until the residual approaches 0. 
• How well flux is approximated, and how quickly the 

residual will approach 0 depends on the choice of 
numerical methods, the mesh refinement, and other 
options. 

X

U

n=1

n=2
What happens when 
the solution 
diverges?



Numerical Methods

• Start from some initial guess of the solution Ui at the 
points in the mesh.

• Update the value of Ui based on approximations to 
the flux vectors between i and all its neighbors j.

• Continue until the residual approaches 0. 
• How well flux is approximated, and how quickly the 

residual will approach 0 depends on the choice of 
numerical methods, the mesh refinement, and other 
options. 

X

U

n=1

n=2

n=3

What happens when 
the solution 
diverges?



The CFL Number

• The Courant, Friedrichs and Lewy (CFL) number is a condition of 
stability for explicit time-backwards in space difference method.

– Explicit in time: depends only on the solution at time n
– Implicit in space: depends on the solution at multiple locations i
– Derivation from von Neumann stability analysis applied to numerical 

algorithms. For more detail, see textbooks on CFD and numerical 
methods.

– CFL = 

• For time-implicit methods, CFL does not need to be less than 1 to 
be stable – no strict limit, dependent on the problem being solved 
and the numerical methods chosen.

• ΔX is controlled by the meshX is controlled by the mesh

|c Δ tΔ x |
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n
)

Index in time

Index in space
Substituting a Fourier 
component, one can find the 
method is stable for CFL ≤ 1
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Controlled by: 
CFL_NUMBER,  mesh, … 



Meshes

In SU2, a primal-dual mesh is used, which constructs control volumes based 
on connecting the midpoints and centroids of all the edges and faces of the 
cells of the initial grid. This allows fluxes to be computed over the edges 
defined in the primal grid. 

Image credit: R. Sanchez, R. Palacios, T.D. Economon, H.L. Kline, J.J. Alonso, and F. Palacios. 
Towards a fluid-structure interaction solver for problems with large deformations within the 
open-source SU2 suite. In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, 2016



Numerical Methods: Related Vocabulary

• Examples: Roe, JST, Lax-Friedrich, CUSP, AUSM, … 
– Described in detail in many references.
– Actual implementation may vary between flow solvers.

• Difference operators/ derivative approximations: what points do 
you use for the Taylor Series, and what order terms do you 
keep? Forward difference, backwards difference, central 
difference, higher order... 

• Truncation error: how large were the terms you dropped from 
the Taylor series?

• Dissipation: how much will the even-ordered neglected Taylor 
series terms round out sharp features of the flow?

• Flux-splitting schemes: do you use a different difference 
operator depending on what direction the information is moving.

• PDE classification for fluid flows: Elliptic where locally 
subsonic, Hyperbolic where locally supersonic.

– Elliptic: characteristics go in different directions, smooth solutions.
– Hyperbolic: characteristics go at different speeds in the same 

direction, solutions can have discontinuities.
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difference, higher order... 
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series terms round out sharp features of the flow?

• Flux-splitting schemes: do you use a different difference 
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– Hyperbolic: characteristics go at different speeds in the same 

direction, solutions can have discontinuities.

Controlled by: 
[FLOW, FEM] NUMERICAL METHOD DEFINITION 

section in the SU2 config file



Conclusions

Further Reading:
• Numerical methods:

– Various textbooks by Anderson,  Hoffman & Chiang, Thompson

– Graduate level CFD coursework

– Journal papers

• SU2 settings: appropriate numerical methods and CFL numbers
– Tutorial files & test cases

• More help:
– Cfd-online.com: wiki and forums

– Turbulence modeling resource
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