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SU2 provides multiple techniques to calculate sensitivities, or gradients
with respect to design variables. They all use the same design variable
definitions.
» Finite differences - perturb each variable in sequence and re-evaluate
the output.
» Continuous adjoint - solve the discretized adjoint of the continuous
problem and project sensitivities onto the variables.
» Discrete adjoint - solve the adjoint of the discretized problem and
project sensitivities onto the variables.

This presentation will discuss each of these methods, including
description of the shape deformation techniques. Practical application of
these techniques will be covered in a following presentation.
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The finite difference method is the most straightforward - the geometry is
deformed, the solution is re-evaluated, and the difference of the object
function values is divided by the step size.
Downsides:
» Requires n+ 1 function evaluations for n design variables - a cost
that becomes prohibitive for large numbers of design variables.

» Accuracy depends on the step size; too large and it will not capture
the local gradient, too small and numerical error will effect the
gradient accuracy.

Benefits:

» Unlimited number of objective functions can be evaluated
simultaneously.

» Simplicity - no additional derivations or automatic differentiation
needed when addressing a new function.



A Free-Form Deformation (FFD) box
technique is used to achieve smooth shape
deformations (Samareh 2004). An initial
box surrounding the object to be redesigned
is parameterized as a Bézier solid,
parameterized by Bernstein polynomials B':

I,m,n

X(u,v,w) = Z Pi,j,kle(U)Bjm(V)Bf(W)v
i\j. k=0

where I, m, and n are the orders of the
Bernstein polynomials, with one polynomial
needed for each of the three dimensions.
The control point indices are i, j, and k.

Onera M6 wing with FFD box
from the SU2 tutorial on
constrained shape design of a
transonic inviscid wing at
https://su2code.github.io/



Hicks-Henne bump functions are use for two-dimensional shape
deformations, particularly for airfoil shapes(Hicks and Henne 1978).

Hicks-Henne functions are defined in terms of the maximum location x,,
and result in smooth functions with zero deformation at the end points

which can be superimposed to produce more complex deformations.

s o _ log(0.5)
fo(x) = sin®(7x®), e, = Tog() x € [0,1],

NACA 0012 airfoil with a single Hicks-Henne bump on the lower surface
deformed by 0.1 with bump centered at 0.3 of the airfoil chord length.
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Both the discrete and continuous adjoint methods use calculus of
variations-based techniques to compute the sensitivity of a single
objective function with respect to infinitesimal changes to the flow
solution. These sensitivities are then projected onto specific deformations

to the geometry in a post-processing step.
» Execution cost independent of the # design variables.
» Derive new PDE for new functionals.
» Sensitivity of one objective at a time.

A.k.a.: Lagrange multipliers, co-state problem, or dual problem.



Optimal control of PDE systems by (Lions 1971) and (Pironneau
1984).

Developed for aerodynamic optimization by (Jameson 1988).

(Castro et al. 2007) developed the continuous adjoint for
unstructured grids using a surface formulation. (Palacios et al. 2013;

Economon et al. 2016) implemented many of these capabilities in
Su2.

Prior to the advent of automatic differentiation tools, analysis by
(Nadarajah and Jameson 2000) indicated that the discrete adjoint
has both a higher memory requirement and more difficult to
implement accurately as compared to the continuous adjoint, while
better able to accurately match finite-difference based.

Details of the discrete adjoint in SU2 using automatic differentiation
tools is provided by (Gauger et al. 2007; Albring, Sagebaum, and
Gauger 2015; Mader et al. 2008; Zhou et al. 2015).
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J: Function of interest. R: Governing equations.

U: State variables (ex: conservative variables).

S: Design variables/independent variables (ex: surface shape).
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J: Function of interest. R: Governing equations.
U: State variables (ex: conservative variables).
S: Design variables/independent variables (ex: surface shape).
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J: Function of interest. R: Governing equations.
U: State variables (ex: conservative variables).
S: Design variables/independent variables (ex: surface shape).

J(U,S) 5J/8S =7
R(U,S) =0
5J §U§U+ 2;55
SR=0= gU5U+ gg
69 =6J —poR = 5U <gljj qu5> +6S (gé - z/;g’;)

oJ OR
choose 9 s.t. <8U — 1/) )
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R(U) = 0 represents the Euler equations.

{ p } 1)
U= P V= %)

'l/}pE
man /

subject to: R(U) =0,

l'l'|<l

L'



R(U) = 0 represents the Euler equations.
P ¢p
U=<¢ pv V= %)
E 'l/}pE

subJect to: R (U) = 8 =6J— / VT ER(U)dQ
Q

L'



R(U) = 0 represents the Euler equations.
P ¢p
U=<¢ pv V= %)
E 'l/}pE

subject to: R (U) = 8 =6J— / VT ER(U)dQ
Q

I‘OO Find W s.t. §J independent
of all unknown 6 U.

0d = / ( )(55ds



RIS, %) +3'[U)(S) =0
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govn eqns govn eqns
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RIS, %) +3'[U)(S) =0

Linearize Derive adjoint

> | Discretize Adjoint
govn eqns govn eqns

[RALUR(Sh, 0) + 3 [U(S) = 0]

Gown Eqns | N adjoint govn Sensitivity,
R(U) =0 equations Error Est., UQ
orRy\T o\ T
(3Uh> i _(0Uh)
Discretize Linearize discrete

e > Derive adjoint
govn eqns govn eqns

Rh(Uh

Further detail of continuous adjoint surface formulation included in
backup slides



Pros and Cons



Method | Costs | New Functionals | Accuracy
.. . Scales with Just add the new Depends on
Finite Differences the number .
. output. step size.
of variables
Dependent
. Requires on
Scales with ~eq . .
. . implementation of well-refined
Continuous Adjoint | the number
. new boundary mesh, good
of functionals . :
conditions. implementa-
tion
Higher .
Requires careful
memory cost di d Di tel
Discrete Adjoint relative to coding and Iscretely
. recompilation for consistent.
continuous .
. new functions.
adjoint.
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Non-Linear Program:

minimize J(X)

with respect to X € R”

subject to (X)=0, j=1,....m
a(X) >0, k=1,...m

Optimization algorithms have been

developed by (Powell 1978), (Wilson 1963),
(Boggs and Tolle 1995) and others.

Evaluate J(X) & ¢(X)

Change Design
Deform Geometry
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Expanding the Lagrangian: 6J = 0J — [, VT 6R(U)d<Q, with the
assumption that ', is undeformed:

_ "9 9j 9j
= [ ds+/ aU&Uds_M WJr/ 3 5uds _/ = 5uds

Applying the divergence theorem to the second term:

/me(U)dQ:/wTﬁ-ﬁwder/ VT A RsUds +/ \UTA?~ﬁ65dsf/ v AsUdQ
JQ r S S Q

Combining the terms above:
59 = / 9 5uds —/\IJTZ\-H(SUds— /wTZ\'-ﬁwds
r s

—/wTA-ﬁU55ds+/va-2\’5UdQ
S Q



assumption that I, is undeformed
0J =

Expanding the Lagrangian: 6J = 0J — [, VT 6R(U)d<Q, with the

ds+/ 815Uds_M W+/ ajzsUds_/ 8J5Uds

Applying the divergence theorem to the second term
v

/ Tﬁﬂz(U)dQ:/wTﬁ-ﬁwder/ TA-FsUds +/
Q r S
Combining the terms above

TA - 76Sds — / v A5UdQ
S Q

Terms that lead to boundary conditions

_ [ vTA

/ TA-RUSSds + / VU . ASUdQ
S

59 =




Expanding the Lagrangian: 6J = 0J — [, VT 6R(U)d<Q, with the
assumption that I'¢ is undeformed:

') /) _ /)
o) = ds+/a(5Ud MW-ﬁ-/aéUd /86Ud

Applying the divergence theorem to the second term:
T _ Tﬂ' = TA - Tz - _ Tz
/Q\IJ 6SR(U)dQ—/r\|J A n6Uds+/S\U A - o Uds +/S\U A - 1i0Sds /va AdUdQ
Combining the terms above:
8./ TZ =
0d = 5Uds— W'A. [oUds —
r
Q

Terms that lead to surface sensitivity
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Expanding the Lagrangian: 6J = 0J — [, VT 6R(U)d<Q, with the
assumption that I'¢ is undeformed:

5= ds+/ aJ(SUd M WJr/ aJ6Ud—/ 8J<5Ud

Applying the divergence theorem to the second term:
T _ T#' = TA - Tz - _ Tz
/Q\IJ 6R(U)dQ—/r\|J A n§Uds+/S‘-II A - o Uds +/S\U A - 1i0Sds /QV\II AdUdQ
Combining the terms above:
0j - o,
53=/ —JéUds—/\UTATnSUds— /wTA.ﬁ(SUds
r. oU r s
- / WT A 7USSds
s

Terms that lead to the adjoint governing equation
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