
Field Inversion and Machine Learning in SU2

August 9th, 2019

Joint National Institute of Aerospace (NIA) & SU2 Foundation
User Workshop

Presenter: Jon Holland
Ph.D. Candidate, Aerospace Engineering

University of Maryland, College Park

Dr. James Baeder
Professor, Aerospace Engineering

University of Maryland, College Park

Dr. Karthik Duraisamy
Associate Professor, Aerospace Engineering

University of Michigan, Ann Arbor

Motivation

2

Strong APG Separated Region

Correction Field - RANS Applications

● Introduce Field Variable to Model

● Effectively changing entire model (not just production term)

● Correction Field Found by Inversion

● Goal: Find 3

FIML Classic

● Data:

● Inversion:

● Training:

4

Why Use SU2 for FIML?

● Open Source

● Auto-differentiated Discrete Adjoint Solver
○ Enables Easy Experimentation

● SciPy Optimizers
○ Easy Interface to Variety of Optimizers

● Large User Base / Community for Support
○ Forum Q/A Was Immensely Helpful

5

FIML Process Analogous to SU2 Adjoint Shape

Optimization, With Redefined Design Variables

SU2 FI-Classic Implementation

6

Summary of Changes to SU2 v5.0.0 Code (FIML-Classic)

1. Redefine Design Variables to Modify Production Term of Turbulence Model
a. Small Number of Design Variables Assumed, FIML Requires Design Variable At Every Node

(~80,000), so Unsigned Shorts -> Unsigned Longs

b. Python Scripting to Initialize Variables, Config Routines to Read and Store Variables in

Turbulence Model (solver_direct_turbulent.cpp)

c. Discrete Adjoint Solver Scripting to Set New DVs as Input, Retrieve and Store Gradient

d. Output Routines to Store and Visualize Gradients (and Other Turbulence Model QOI)

e. Store Variables and Gradients Separately From Config File, Python Routines to

Read/Store/Copy Files as Necessary During Inversion

2. Define FIML Objective Functions
a. solver_direct_mean.cpp, solver_direct_mean_inc.cpp

3. Modified Python Optimizers
a. Added Interface to SciPy L_BFGS_B (Limited Memory BFGS), and Steepest Descent

b. Added Routines to Validate, Test Gradient (Not Possible to Validate Gradients by FD)

7

FI-Classic Inversion Results: S809 Airfoil

8

● Integrate Neural Network In Turbulence Model!

● Train Weights Directly!

● Primary Difference from FIML-Classic in SU2 Code is All in Turbulence Model

○ Gather / Scale Turbulent Features, Forward Propagate to Obtain Correction Field

○ Backpropagate to Give Regularization Term Component Gradient (NOT Used to

Update Weights)

○ Weights Held Constant, Are Now the Design Variables for Discrete Adjoint Solver

9

FIML Direct in SU2

FIML Direct: Weights as Design Variables

● Train Neural Network Directly By Treating Weights as the Design Vars:

● Correction is Output of Neural Network
○ Updated Every Flow Iteration With Current Features

● Weights Held Constant For Each Evaluation
○ Initialized to Small Random Values

● Inversion is Simply:

10

SU2 FIML Direct Implementation for Multiple Cases

11

FIML-Direct S809 Trained at 3 AoAs

12

Testing on S814 Airfoil

● Network Trained on 7 S809 AoAs

● S814 NOT in Training Set

● Model Augmentation Improves

Predictions on S809 AND S814

Airfoil

13

S814 Airfoil

S809: Training Data

S814: Holdout

Questions?

14

https://github.com/jholland1

https://www.researchgate.net/profile/Jonathan_Holland5

https://github.com/jholland1/SU2/tree/feature_fiml
https://www.researchgate.net/profile/Jonathan_Holland5

