

Turbomachinery in SU2: From Blade Geometry generation to Adjoint Design Optimization

Aman uz zaman Baig, Dr. Mark Turner

baigan@mail.uc.edu

Gas Turbine Simulation Lab Aerospace Engineering Dept. University of Cincinnati

August 9th, 2019

5 Conclusion

イロト イポト イヨト イヨト

э

Introduction

Intent of the presentation:

- Explain basic procedure to run Turbomachinery cases in SU2
- Discussion of results of two cases: 3 Blade Row case, IGVs only (distorted inlet NASA profile)
- I will keep things very brief

Geometry Generation Grid Generation Exporting the .su2 format Periodic meshes

T-Blade3: 3D blade geometry builder

Quick overview:

- A parametric 3D blade geometry builder
- The geometric and aerodynamic parameters are used to create 2D airfoils which are then stacked on the desired stacking axis
- Available on github.com/GTSL-UC/T-Blade3
- Can output a .geomTurbo file which can be used to create grids in Numeca Autogrid

Geometry Generation Grid Generation Exporting the .su2 format Periodic meshes

T-Blade3: 3D blade geometry builder

Quick overview:

- A parametric 3D blade geometry builder
- The geometric and aerodynamic parameters are used to create 2D airfoils which are then stacked on the desired stacking axis
- Available on github.com/GTSL-UC/T-Blade3
- Can output a .geomTurbo file which can be used to create grids in Numeca Autogrid

Geometry Generation Grid Generation Exporting the .su2 format Periodic meshes

Grid generation using Autogrid

Quick overview:

- .geomTurbo is an input for Numeca Autogrid that can create a multi-block structured grid
- The solution is then run in Fine/Turbo for a reference solution
- Export a plot3D file for Pointwise

▲ @ ▶ < ∃ ▶</p>

Geometry Generation Grid Generation Exporting the .su2 format Periodic meshes

Grid generation using Autogrid

Quick overview:

- .geomTurbo is an input for Numeca Autogrid that can create a multi-block structured grid
- The solution is then run in Fine/Turbo for a reference solution
- Export a plot3D file for Pointwise

Geometry Generation Grid Generation Exporting the .su2 format Periodic meshes

Pointwise: Exporting in .su2 format

- The key is to merge the blocks by connecting the overlapping domains (or faces)
- Multi-block grid converts to a single-block grid
- A .su2 format can then be exported
- The same procedure has to be followed for each blade row

< 🗗 🕨

Geometry Generation Grid Generation Exporting the .su2 format Periodic meshes

Generating the periodic mesh

- SU2_PER or SU2_MSH for creating periodic meshes
- SU2_PER much faster
- (Issue) The periodicity is only matched with a certain donor, receiver pair, if it is reversed the periodic points cannot be found.
- The same procedure has to be followed for each blade row and combines zones later on

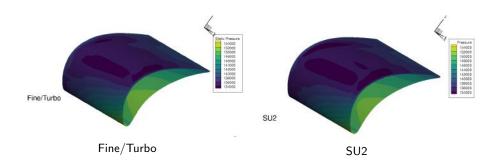
< 🗗 🕨

Three blade row case NASA's BLI Design Case

Case overview:

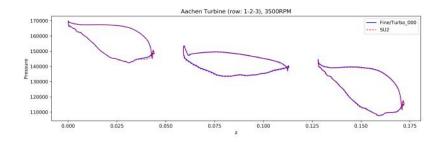
- Standard Aachen Turbine Case
- Constant Inlet/Outlet conditions
- No tip gap, issues in Pointwise
- Venkatakrishnan (slope limiter values used: 0.05, 0.2, 0.9), too many fluctuations, diverged in all cases.
- Van Albada Edge, all fluctuations nearly smoothed out

< 🗗 🕨


Three blade row case NASA's BLI Design Case

э

イロト イポト イヨト イヨト


Pressure distribution over the Rotor

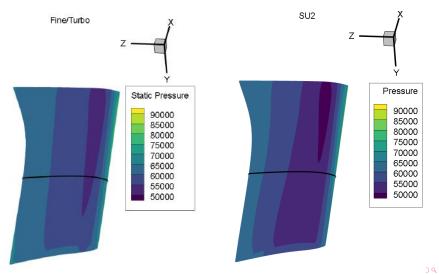
Three blade row case NASA's BLI Design Case

Static Pressure comparison

э

< ∃→

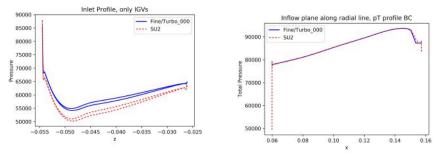
Three blade row case NASA's BLI Design Case


NASA BLI Case:

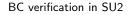
- Boundary Layer Ingestion Propulsor design with NASA
- Inlet boundary layer distortion profile
- Need an inlet.dat file with coordinates of all grid points, including the halo cells
- Required a customized python program to use periodic_halo files for the 2D and 3D meshes for the inlet face from Pointwise
- Worked with matching point accuracy of 1e-10.

Three blade row case NASA's BLI Design Case University of CINCINNATI

Pressure distribution over IGVs



Aman Baig


Three blade row case NASA's BLI Design Case

Distorted profile results

Pressure distribution over the IGV at a spanwise section

э

.∃ →

Recommendations

Issues and Recommendations:

- No multi-grid for Periodic Boundaries, makes at least 10 times slower than Fine/Turbo
- No interpolation for inlet files yet
- inlet_example.dat does not include periodic points
- Inlet file for multi-zone grids is not found in the working directory
- Separate config files for every zone to initialize differently

Future Work Questions

Future Work:

- Working on grid differentiation in T-Blade3
- Adjoint Optimization
- Harmonic Balance
- Integrate with structural solver for FSI

(日) (同) (三) (三)

Future Work Questions

Thanks for your attention.

Questions?

イロト イポト イヨト イヨト

æ