

Tutorial 2: Python Scripts

Dr. Heather L. Kline National Institute of Aerospace August 9th, 2019

Agenda

- Get the tutorial files
- Start the simulation (generate a drag polar)
- Introduction to python scripts distributed with SU2
 - Drag polar
 - Shape optimization
- Anatomy of a python script
- Results of the simulation

Acknowledgments

The files for this tutorial are based on a test case for the compute_polar.py script developed by E. Arad

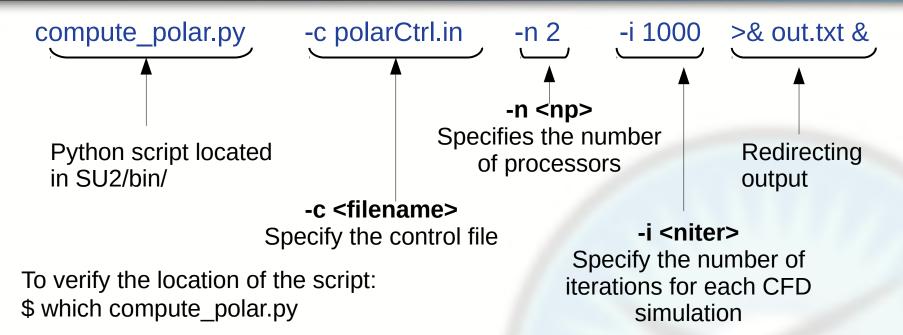
NATIONAL INSTITUTE OF AEROSPACE

Tutorial Files And Required Settings

- Set PYTHONPATH (if not already done): export SU2_RUN=<..../bin/> (path to SU2_CFD, etc) export PYTHONPATH=\$PYTHONPATH:\$SU2_RUN
 - Python scripts require the path in order to find all the functions that are defined in subfolders.
 - Python scripts can now be called from any folder without moving the scripts.
- Get and extract configuration, mesh and solution files:
- Move to the new directory: cd WorkshopTutorial2/
 - Similar to files needed for SU2_CFD analysis.
 - Additional 'ctrl' file for polar computation definition
- The files for this tutorial are based on a test case for the compute_polar.py script developed by E. Arad.
- Modify to use paraview if needed.

Starting the Simulation

compute_polar.py -c polarCtrl.in -n 2 -i 1000 >& out.txt &


To verify the location of the script: \$ which compute_polar.py

To check the number of available processors: \$ nproc

To follow the output to opt.out: \$ tail -f out.txt

Starting the Simulation

To check the number of available processors: \$ nproc

To follow the output to opt.out: \$ tail -f out.txt

NATIONAL INSTITUTE OF AEROSPACE

More about compute_polar.py

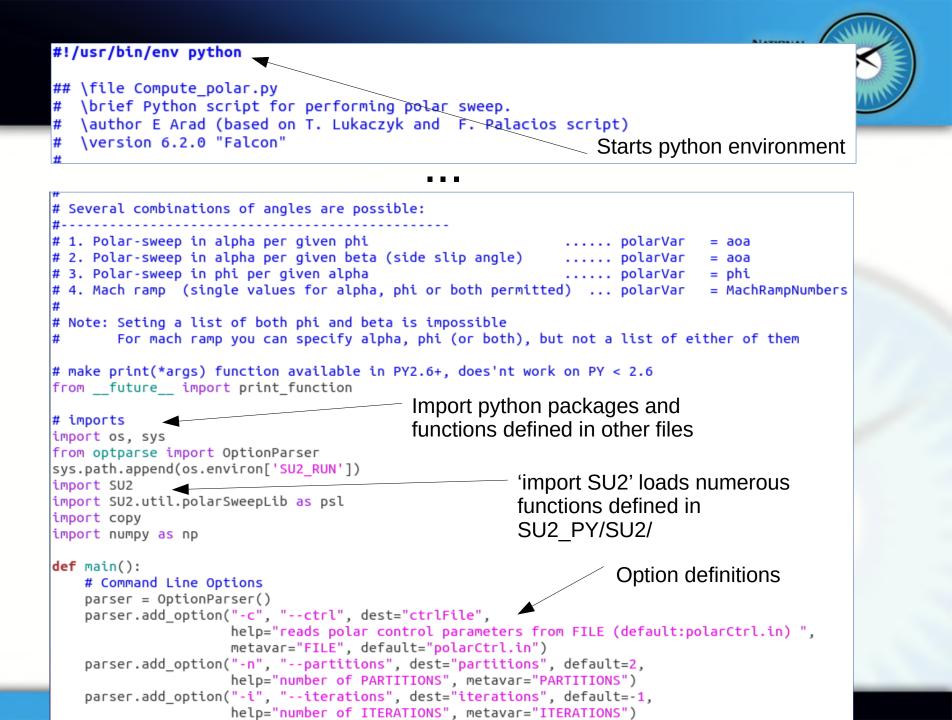
- compute_polar.py -h
- PolarCtrl.in file
- open compute_polar.py in a text editor

compute_polar.py -h Usage: compute_polar.py [options]

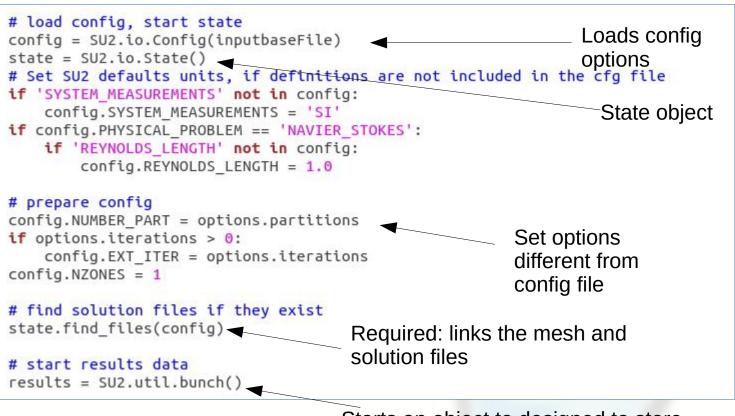
Options:

```
 -h, --help show this help message and exit
 -c FILE, --ctrl=FILE reads polar control parameters from FILE (default:polarCtrl.in)
 -n PARTITIONS, --partitions=PARTITIONS number of PARTITIONS
 -i ITERATIONS, --iterations=ITERATIONS number of ITERATIONS
 -d geomDim, --dimmension=geomDim Geometry dimension (2 or 3)
 -w, --Wind Wind system (default is body system
 -v, --Verbose Verbose printout (if activated)
```

NATIONAL INSTITUTE OF AEROSPACE

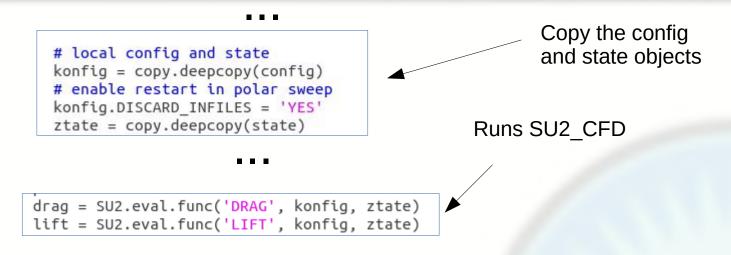

Python Scripts

- Source code location: SU2/SU2_PY/
- Installed location: SU2/bin/
- To run a local version: ./python_script.py
- To run version installed in the bin/ directory: python_script.py


🔻 💕 SU2

autom4te.cache

- 🕨 🚌 Common
- 🕨 🚌 externals
- ▶ 🗁 m4
- 🕨 🗁 QuickStart
- SU2_CFD
- SU2_DEF
- SU2_DOT
- SU2_GEO
- SU2_IDE
- SU2_MSH
- SU2_PY
- Esi
 pySU2
- E SU2
- eval
- 🕨 🗁 io
- 🕨 🗁 mesh
- 🕨 🗁 opt
- 🕨 🗁 run
- 🕨 🗁 util
- __init__.py
- change_version_number.py
- change_version_number.py~
- compute_polar.py
- compute_stability.py
- config_gui.py
- continuous_adjoint.py
- direct_differentiation.py
- discrete_adjoint.py



. . .

Starts an object to designed to store solutions

The state object stores whether the solution has already been run:

- Only the first SU2.eval.func... will start a new simulation, subsequent calls will pull from stored data.

- A deepcopy is necessary to avoid pulling results from previous solutions.

Runs function defined in 'main' when script is executed at the command line

The Other Python Scripts

- parallel_computation.py
 - Most used: runs a parallel SU2_CFD simulation using a specified input file and number of processors.
 - MPI behavior defined in SU2/run/interface.py
- finite_differences.py, continuous_adjoint.py, discrete_adjoint.py
 - Evaluate gradients using the associated method.
 - Uses the design variables and deformation settings defined in the SU2 config file.
- set_ffd_design_var.py
 - Generates FFD box design variable definitions
- shape_optimization.py
 - Executes a shape optimization problem defined in a specified SU2 config file, using gradient information with a method specified by script inputs.
 - More on this covered in a later tutorial in this workshop.
 - Next: what is optimization?

Introduction to Optimization

Specifications Baseline Evaluate $J(\vec{x}) \& c(\vec{x})$ Change Design Deform Geometry Evaluate $\frac{\partial J}{\partial \vec{x}}$ & $\frac{\partial c}{\partial \vec{x}}$ Pick search direction **Optimized?** no yes **Fixed** Design

Non-Linear Program:

minimize with respect to $\vec{x} \in \mathbb{R}^n$

 $J(\vec{x})$ subject to $\hat{c}_i(\vec{x}) = 0, \quad j = 1, ..., \hat{m}$ $c_k(\vec{x}) \geq 0, \quad k = 1, ..., m$

 \vec{X} : design variables, bump functions, FFD control points

J: objective function, an evaluation of SU2 CFD

c : constraints, an evalution of SU2 CFD or SU2 GEO

Optimization Algorithm: SciPy SLSQP Gradient Techniques: continuous adjoint, finite difference, discrete adjoint.

Results from compute_polar.py script

- Polar_M0.8.dat
 - Output of AoA, Mach, and aerodynamic coefficients
- DIRECT_... folders

Questions?

Up next: hackathon